HP-67 Quick Reference

© A. Thimet

Memory & Display

Memory	26 storage registers, 224 program steps.
	Memory not preserved thru power-off
FIX	Select fix point format
SCI	Select scientific (exponential) format
ENG	Select engineering (exponential) format where the exponent always is a multiple of 3
DSP n	Select number of decimal digits, n=09
DSP (i)	Select number of decimal digits according to the absolute value of the integer part of the value in the index register I
RND	Round X to the current number of display digits
CLx	Clear X register

Storage Registers & Indirect Operations

General	Storage registers are: R0-R9, A-E, & I (primary registers)
	There's also a secondary register set R10-R19 but its registers cannot be
	accessed directly thru STO & RCL!
	Rather, indirect addressing or $P \leftrightarrow S$ must be used
CL REG	Clears registers 0-9, A-E & I. Does not clear secondary registers!
STO 09, AE	Save X in storage register
STO +-x÷ 09	Storage register arithmetic: Register OP X \rightarrow Register
	Not available for registers AE!
ST I	Store X in indirect register I
STO (i)	Store X in the register indexed by the absolute value of the integer part
STO +-x÷ (i)	of I. An error occurs if the I is out of range. Register arithmetic is
	supported for all values of I. Values of I and associated registers:
	0-9=primary R0-R9, 10-19=secondary R0-R9, 20-24=A-E, 25=I
RCL 09, AE	Retrieve value from storage register.
	Recall register arithmetic is not supported
RC I	Retrieve index register I
RCL (i) <i>or</i> (i)	Retrieve register indexed by I
X↔I	Exchange X with index register I
P↔S	Exchange primary and secondary register set values
REG	Displays primary registers R0-R9, A-E & I.
	For the numbering see STO (i)

Functions (selection)

y ^x	Y to the power of X. Y may be negative if X is integer
n!	Faculty of integer argument ≥ 0
H→H.MS	Convert fractional hours to hours/minutes/seconds in h.mmss format
H←H.MS	Convert hours/minutes/seconds in h.mmss format to fractional hours
H.MS+	Add numbers in hours/minutes/seconds format.
	To substract add a negative X
DEG	Use trigonometric mode degress (360, default)
RAD	Use trigonometric mode radians (2π)
GRD	Use trigonometric mode grad (400)
D→R	Convert degress (360) to radians (2π)
D←R	Convert radians (2π) to degress (360)
R→P	Convert rectangular coordinates (X,Y) to polar coordinates (r,θ)
R←P	Convert polar coordinates (r, θ) to rectangular coordinates (X, Y)
%	Calculate X percent of Y. Stack does not drop!
%CH	Calculate percentual difference from Y to X. Stack does not drop!
A - E	If the program memory is clear (default after power-on) these keys perform
	standard operations.
	If program code has been entered these standard operations must be
	executed using shifted keys of the number pad
SPACE	Doesn't do anything, only for HP-97 compatibility

Summation

Memory	The summation registers are mapped to the following <i>secondary</i> registers:
	$14=\Sigma x$ $15=\Sigma x^2$ $16=\Sigma y$ $17=\Sigma y^2$ $18=\Sigma xy$ $19=n$
	IMPORTANT: CL REG does not clear the summation registers! Use CL REG
	and then $P \leftrightarrow S$ to exchange the zeroed primary with the secondary register
	contents!
Σ +	Add X & Y to the summation registers and increment n
Σ-	Substract X & Y from the summation registers and decrement n
STO Σ +	Same as Σ +
RCL Σ +	Retrieve Σx and Σy into X and Y
x	Calculate mean of X & Y values and place result in X & Y
S	Calculate standard deviation sx & sy and place result in X & Y where:
	sx=SQRT[$\{n\sum x^2 - (\sum x)^2\} / \{n(n-1)\}$] and similar for sy

Programming

Memory	224 merged program steps
W/PRGM – RUN	Selects RUN or PRGM mode
switch	
CL PRGM	In PRGM mode:
	Clears program memory
	Selects FIX 2
	Chooses trigonometric mode degrees (360)
	Clears all four flags
	In RUN mode: Sets program counter to 000
Program editing	Use SST & BST to step thru the program memory
	• Delete the currently displayed instruction with DEL (on the CLx
	key). Also, the program counter moves back one instruction
	New instructions are inserted after the currently displayed one
SST	RUN mode: Displays next instruction while SST is held down. Executes
	instruction when key is released
BST	RUN mode: Displays previous instruction while BST is held down. Backs
	up program counter to previous instruction when key is released. No
	code is executed!
LBL 09, AE	Insert a label. Labels are searched from the current position and it is
LBL f ae	possible to use the same label multiple times
GTO . nnn	In PRGM and RUN mode sets the program counter to the specified
	instruction line 0224
GTO 09, AE	PRGM mode: Insert jump instruction to given label
GTO f ae	RUN mode: Sets the program counter to the specified label
GSB 09	PRGM mode: Inserts subroutine call to given label. A maximum of 3
[GSB] AE	subroutine calls can be nested
[GSB f] ae	RUN mode: Executes program at the given label
	Note: When keys AE or ae are used it is not necessary to prefix
	them by GSB, neither in PRGM nor RUN mode
GTO (i)	$I \ge 0$: Jumps to the specified label. Values of I and associated labels:
	09=LBL 09, 1014=LBL AE, 1519=LBL ae
	I < 0: Jumps back the specified number of program steps
	The fractional part of I is discarded
GSB (i)	Same as GTO (i) except that a subroutine call is performed
RTN	PRGM mode: Insert return instruction. Returns from subroutine or at
	the top level halts program and sets program counter to
	000
	RUN mode: Sets program counter to 000
DSZ	Decrement and skip when zero.
	Decrements the I register and skips the next instruction if after the
	decrement the integer part of I is 0 (-1 <i<1)< th=""></i<1)<>
DSZ (i)	Same as above except that the storage register indexed by the
	absolute value of the integer part of I will be decremented.
	See SIO (i) for register numbers
ISZ	Increment and skip when zero.
	Increments the I register and skips the next instruction if after the

	increment the integer part of I is 0 (-1 <i<1)< th=""></i<1)<>
ISZ (i)	Same as above except that the storage register indexed by the
	absolute value of the integer part of I will be incremented.
	See STO (i) for register numbers
SF n, CF n, F? n	There are four flags 03. F? n tests a flag:
Flags	 If flag is set next program instruction is executed
	 If flag is clear next program instruction is skipped
	Flags 2 & 3 are automatically cleared when they are tested using F?
	Flag 3 is automatically set when data has been entered or a magnetic
	card has been read. This is extremely useful in order to determine
	whether the user wants to enter a variable when pressing A-E (or a-e)
	or whether he wants to solve an equation for the variable that is
	associated with the function key. In the former case Flag3 is set in the
	latter Flag3 is clear.
Relational	See calculator for available comparisns between X and Y and Y and 0
operators	If the relation is true the next program line is executed
	If the relation is false the next program line is skipped
-x-	Displays X with a blinking decimal point for 5 seconds. Any key press
	halts the program
PAUSE	Displays X for about 1 second. If a key is pressed its function is
	executed and the pause prolonged by another second. Only R/S stops
	the program execution.
	It is even possible to read a magnetic card during a PAUSE!

Magnetic Card Reader, Manual Operation

Write program	 To write the contents of the program memory to a magnetic card: Select W/PRGM mode and insert the card from the right side Program instructions will automatically be written and if necessary, previous contents of the card are erased (as long as the card is not protected by cutting off the "ears") A maximum of 112 program steps can be written to one side of the card. If there are more instructions present the display shows Crd and the card must be reinserted top-down so that the remaining code can be written in a 2nd pass
	The following information will be recorded on the magnetic card:
	 Whether the data corresponds to pass 1 or pass 2
	 Whether only one or both sides have been written
	State of all four flags
	Current trigonometric mode (DEG, RAD, GRD)
	 Display format (FIX, SCI, ENG and number of digits)
	Program data
	A checksum
Read	To read in the program contained on a magnetic card:
program	Select RUN mode and insert card from the right side
	Program instructions will automatically be read and previous contents of
	the program memory will automatically be overwritten
	• If necessary Crd is displayed to inform that the 2 rd side must be read as

	well.
	Note that order of reading the sides doesn't matter!
	• If an empty card is inserted the program memory is not affected.
	However, if data has partially been read from the card and an error occurs
	the current program memory will be lost
	• Note that all 244 program steps will be affected even if the card contains
	only a few instructions: The remaining program memory is filled with R/S
	commands (code 84)
	• All the information stored on the card (ie. trigonometric mode, flags, etc.,
	see above) is undated
	 Storage registers and the stack are not affected
W/DATA	Magnetic cards can also contain data (=numbers) instead of program code.
	To write a data card:
	Select RUN mode
	 Press W/DATA and insert a card when Crd is displayed. All storage
	register contents will be saved
	• If the secondary registers are not all 0 then Crd is displayed and the card
	must be reinserted for a 2 nd pass
	To read a data card:
	Select RUN mode
	Insert data card. Storage register contents will automatically be read
	 If necessary Crd is displayed to inform that the 2nd side must be read as
	well At this point CLX can be pressed to abort the process in which case
	the calculator's secondary registers are not affected
	 Note that order of reading the sides doesn't matter!
MERGE	Allows to append a program stored on a magnetic card to the program
program	already in memory.
program	Select RUN mode
	• Enter GTO
	overwritten by the magnetic card data $Or: nnn+1$ is the first program line
	that will receive the code from the card
	 Press MERGE and insert card. If is Crid displayed re-enter the card ton-
	down for a 2 nd nass
	 Note that no matter how short the merged program is it will always
	overwrite all the program memory from step pnp+1 to 224
MERGE	Allows to partially read in storage register data from a data card
data	Select RUN mode
	 Store a number from 0 to 25 in the I register. See STO (i) for register.
	numbers
	Press MERGE and insert the data card. If is Crid displayed re-enter the
	card top-down for a 2 nd pass
	 Storage registers () to including the register indexed by I will receive data
	from the magnetic card. Only the absolute value of the integer part of Lis
	used. If I>25 then all data will be read
	used. If 1>25 then all data will be read

Magnetic Card Reader, Programmed Operation

General	Under program control it is possible to:
	Read a data card containing storage register values

	 Partially read a data card containing storage register values Write storage register values to a data card
	Read a program card
	 Partially read (append) instructions from a program card
	Note that once the program has been started a magnetic card can be
	inserted in the card reader slot in preparation of the anticipated read or
	write operation. When the program reaches the PALISE command (see
	below) the card reader will sense the presence of the card and read or write
	it. This allows for unattended operation as long as no 2 nd pass is needed to
	read or write side 2 of the card
Read	The program must contain a PAUSE instruction
register	• When the user enters a magnetic <i>data</i> card during the PAUSE the
values	register contents will be read and Flag3 is set. If no card is inserted the
	program continues normally and Flag3 is clear
Read	 The program must prepare the I register, see MERGE above
register	 The program must contain a MERGE and then a PAUSE instruction
values	• When the user enters a magnetic <i>data</i> card during the PAUSE the
partially	register contents will be read starting from register 0 up to including the
	register specified by I. Flag3 is set. If no card is inserted the program
	continues normally and Flag3 is clear
Write	 The program must contain a W/DATA and then a PAUSE instruction
register	 When a magnetic card is inserted during the PAUSE all register contents
values	will be written. If all secondary registers are 0 no 2 nd pass is necessary
Read	 The program must contain a PAUSE instruction
entire	• When the user enters a magnetic <i>program</i> card during the PAUSE its
program	program instructions will overwrite the entire program memory
	Execution will restart at program step 000
Append	 The program must contain a MERGE and PAUSE instruction
program	• When the user enters a magnetic <i>program</i> card during the PAUSE its
	program instructions will overwrite the program memory starting with the
	first instruction after the PAUSE command
	 Execution will restart at the instruction following the PAUSE command